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Aims of the talk

1. Demonstrate how to fit distance sampling models in

R-INLA/inlabru.

2. Highlight general features of inlabru that are applicable in a wide

range of contexts (not just distance sampling).
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Akepa Case Study
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Akepa Case Study

Hawaii Forest Bird Survey transect locations
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Akepa Case Study

source: Jack Jeffrey, US Fish and Wildlife Service
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What is distance sampling?
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What is distance sampling?
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What is distance sampling?

Note the intercept assumed equal to 1
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What is distance sampling?
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Spatial modelling with distance sampling data

The traditional two-stage approach:

1. Estimate the detection function

2. Bin data into counts (discretise space)

3. For each bin, calculate the ‘effective sampled area’

4. Fit a count GLM/GAM with an ‘effective sampled area’ offset term

Pick your favourite GLM/GAM software (mgcv is a popular choice)

Notable alternative: unmarked package (Fiske et al., 2011) does one

stage maximum likelihood with a multinomial formulation (Royle et al.,

2004) (distances + space must be discrete classes).
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R-INLA

R-INLA allows us to fit GLMs/GAMs

Why bother?

1. R-INLA does fast approximate Bayesian computation using Laplace

approximations (avoids MCMC)

2. Incorporate prior knowledge of the species (in practice, this is rare to

see)

3. One-stage model fit - simultaneously estimate detection and

spatial models

4. Sample from joint and marginal posterior distributions -

uncertainty in detectability is accounted for naturally

5. Use popular R-INLA features (point process likelihoods, scalable

sparse random effects, spatio-temporal models, barrier model,

extreme value distributions, penalised complexity priors)

6. Support for multiple likelihoods (e.g. multiple data sources)
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A Point Process Perspective
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A Point Process Perspective

The intensity for detected points is λ̃(s) = λ(s)p(s)

Let Ñ(A) denote the number of detected points within a region A

N(A) ∼ Poisson(Λ̃)

Λ̃ =

∫
A

λ̃(s)ds

log λ̃(s) = log λ(s) + log p(s)

log λ̃(s) is the predictor

log λ(s) is the spatial process model

log p(s) is the observation process model

This model is implemented in inlabru as a "cp" (Cox process) likelihood
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A Point Process Perspective

We don’t know exactly where the points are

We can derive the appropriate intensity (point transects presented here)

For a single transect with centre s0

s(r , θ) = s0 + r [cos θ, sin θ]T

We only observe the distance r and don’t know the angle θ

λ̃(r) =

∫
c(r)

p(r)λ(s)ds

=

∫ 2π

0

rp(r)λ(s(r , θ))dθ

= 2πrp(r)λ(s0)

2πr accounts for the increasing circumference as distance increases
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A Point Process Perspective

log λ̃(s, r) = log 2πr + log p(r) + log λ(s)

p(r) = exp
(
−r2/2σ2

)
where σ2 > 0

This is a non-linear thing in our predictor!

If we knew p(r) exactly then this would act like an offset term

Guess p(r), fit a model, search for a better guess, iterate until

convergence

we call this approach iterated INLA and it is implemented in inlabru

(details in forthcoming paper...)

21



A Point Process Perspective

log λ̃(s, r) = log 2πr + log p(r) + log λ(s)

p(r) = exp
(
−r2/2σ2

)
where σ2 > 0

This is a non-linear thing in our predictor!

If we knew p(r) exactly then this would act like an offset term

Guess p(r), fit a model, search for a better guess, iterate until

convergence

we call this approach iterated INLA and it is implemented in inlabru

(details in forthcoming paper...)

21



A Point Process Perspective

log λ̃(s, r) = log 2πr + log p(r) + log λ(s)

p(r) = exp
(
−r2/2σ2

)
where σ2 > 0

This is a non-linear thing in our predictor!

If we knew p(r) exactly then this would act like an offset term

Guess p(r), fit a model, search for a better guess, iterate until

convergence

we call this approach iterated INLA and it is implemented in inlabru

(details in forthcoming paper...)

21



A Point Process Perspective

log λ̃(s, r) = log 2πr + log p(r) + log λ(s)

p(r) = exp
(
−r2/2σ2

)
where σ2 > 0

This is a non-linear thing in our predictor!

If we knew p(r) exactly then this would act like an offset term

Guess p(r), fit a model, search for a better guess, iterate until

convergence

we call this approach iterated INLA and it is implemented in inlabru

(details in forthcoming paper...)

21



A Point Process Perspective

log λ̃(s, r) = log 2πr + log p(r) + log λ(s)

p(r) = exp
(
−r2/2σ2

)
where σ2 > 0

This is a non-linear thing in our predictor!

If we knew p(r) exactly then this would act like an offset term

Guess p(r), fit a model, search for a better guess, iterate until

convergence

we call this approach iterated INLA and it is implemented in inlabru

(details in forthcoming paper...)

21



A Point Process Perspective

log λ̃(s, r) = log 2πr + log p(r) + log λ(s)

p(r) = exp
(
−r2/2σ2

)
where σ2 > 0

This is a non-linear thing in our predictor!

If we knew p(r) exactly then this would act like an offset term

Guess p(r), fit a model, search for a better guess, iterate until

convergence

we call this approach iterated INLA and it is implemented in inlabru

(details in forthcoming paper...)

21



Spatial Model
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Summary

To summarise:

• Take a point process perspective

• Observations depend on a thinned intensity

• Thinning by the detection function

• Spatial random effect to estimate the intensity

• log-Gaussian Cox point process likelihood (implemented in inlabru)

• Iterated INLA for inference (implemented in inlabru)
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What is inlabru?

inlabru is, in part, a wrapper for R-INLA

Aims to make fiddly R-INLA things easier to do:

• Support for spatial modelling (handles sp objects)

• ‘Automatic’ stack-building

• User-named model components (no more remembering your

indexing)

• Support for joint likelihood models

• predict(...) methods and plot(...) functions

inlabru is also an extension of R-INLA

• define non-linear model components in the predictor

• Iterated INLA

• Cox process likelihood

• Support for building numerical integration schemes
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Akepa Case Study
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Akepa Case Study

Hawaii Forest Bird Survey transect locations
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Akepa results

Summary statistics of the posterior intensity field
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Akepa results

Three realisations of the posterior intensity field
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Akepa results

A “distance sampling adjusted” Ripley’s K-function
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Akepa results

Posterior of realised abundance ± 2 Monte Carlo standard errors 31



Akepa results

Posterior detection function and Matérn covariance function
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Aims of the talk

1. Demonstrate how to fit distance sampling models in

R-INLA/inlabru.

2. Highlight general features of inlabru that are applicable in a wide

range of contexts (not just distance sampling).
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Non-linear model components in spatial ecology

Directly model detectability

Many papers in species distribution modelling use a log-linear effect of a

covariate “to account for detectability”.

This term in the model not constrained to be between 0 and 1

inlabru allows us to use pnorm(...), for example.
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Non-linear model components in spatial ecology

Functional responses

e.g. a “saturating” response:

f (z |α, γ) = α(1− exp(−γz))
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Non-linear model components in spatial ecology

Build an interpretable predictor expression that incorporates our

understanding of the ecology.

Other functional responses:

• Trade-offs between resources (prey-choice literature)

• Selectivity curves for fisheries data

• Force positive / negative / quadratic relationships

• I’m sure many more! (please tell me)

Replace random effects with parametric dependence structures:

• Instead of, for example, AR1 through time, replace AR1 with some

ecological theory?

• e.g. Ricker growth model

• The population ecology literature is vast

One more idea in the works:

• Level set Cox process - allow a mixture of random fields
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A word of warning
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Extras!
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Extras!

0.025 and 0.975 pointwise prediction quantiles for the posterior intensity field
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Extras!

Excursion set for 1 bird per hectare and 95% probability level and

corresponding excursion function
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