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Akepa Case Study
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Akepa Case Study

Hawaii Forest Bird Survey transect locations
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Akepa Case Study

source: Jack Jeffrey, US Fish and Wildlife Service
4



What is distance sampling?
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Spatial modelling with distance sampling data

The traditional two-stage approach:

1. Estimate the detection function

2. Bin data into counts

3. For each bin, calculate the ‘effective sampled area’ (probability of

detection x size of bin)

4. Fit a count GLM/GAM with an offset term

Pick your favourite GLM/GAM software (mgcv is a popular choice)
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R-INLA

R-INLA allows us to fit GLMs/GAMs

Why bother?

1. You want to be Bayesian but you are too impatient for MCMC

(INLA is fast approximate Bayesian method)

2. Incorporate prior knowledge of the species (who does this

though?)

3. One-stage model fit - simultaneously estimate detection and

spatial models

4. Sample from joint and marginal posterior distributions -

uncertainty in detectability is accounted for naturally

5. Use popular R-INLA features (point process likelihood, scalable

sparse random effects, spatio-temporal models, barrier model,

extreme value distributions, penalised complexity priors)

6. Support for multiple likelihoods (e.g. multiple data sources)
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A Point Process Perspective
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A Point Process Perspective

The intensity for detected points is λ̃(s) = λ(s)p(s)

log λ̃(s) = log λ(s) + log p(s)

log λ(s) is the spatial process model

log p(s) is the observation process model

This model is implemented in inlabru as a "cp" (Cox process) likelihood
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Iterated INLA

p(r) = exp
(
−r2/2σ2

)
where σ2 > 0

log p(r) is non-linear in σ2

If we knew p(r) exactly then this would act like an offset term

1. Guess p(r)

2. Fit a model with p(r) as offset

3. Search for a better guess

4. Iterate until convergence

Search is Newton-Raphson + some tweaks

Convergence defined as ‘the modes of the marginal posteriors don’t

change’
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Spatial Model
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Akepa case study

Summary statistics of the posterior intensity field
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Akepa case study

Three realisations of the posterior intensity field
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Akepa case study

Analagous to Ripley’s K-function
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Akepa case study

Posterior of realised abundance ± 2 Monte Carlo standard errors 17



Akepa case study

Posterior detection function and Matérn covariance function
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Extras!

20



Non-linear model components in spatial ecology

Functional responses:

• Diminishing returns (saturating responses)

• Trade-offs between resources (prey-choice literature)

• Selectivity curves for fisheries data

• Force positive / negative / quadratic relationships

Replace random effects with parametric dependence structures:

• Logistic growth

• Ricker growth

• The population ecology literature is vast

Other things:

• Level set Cox process - allow a mixture of random fields
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Extras!

0.025 and 0.975 pointwise prediction quantiles for the posterior intensity field
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Extras!

Excursion set for 1 bird per hectare and 95% probability level and

corresponding excursion function
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