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Overview

1. Current spatial capture recapture point pattern models

2. Two new approaches, two simulation studies

3. Case study: Louisiana black bear data
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Point Pattern Models

• Homogeneous Poisson process (complete spatial randomness)

• Inhomogeneous Poisson process (linear spatial covariates)

• Strauss process for territorial species (Reich and Gardner,

Environmetrics (2014))

6



Point Pattern Models

• Homogeneous Poisson process (complete spatial randomness)

• Inhomogeneous Poisson process (linear spatial covariates)

• Strauss process for territorial species (Reich and Gardner,

Environmetrics (2014))

6



Point Pattern Models

• Homogeneous Poisson process (complete spatial randomness)

• Inhomogeneous Poisson process (linear spatial covariates)

• Strauss process for territorial species (Reich and Gardner,

Environmetrics (2014))

6



Spatial Random Effects

Gaussian random field

• SPDE approach

• Solutions to SPDE have

Matérn covariance

• Finite element mesh +

piecewise linear basis functions

• Sparse precision matrix

approximation

Thin Plate Regression Spline

• Differential equation defines

smoothing penalty

• Basis functions defined on each

data point

• Global linear null-space basis

functions

• Truncated eigen-basis

approximation

Inference via Laplace approximation

Likelihood intractable: use automatic differentiation

Implemented in Template Model Builder (TMB)

Kristensen et al., JSS (2016)
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Simulation Study - Gaussian Random Field

• Coarse mesh: memory issues with more nodes

• Sparsity broken by latent point locations

• Bad fits: related to above?

• Alternative to sparsity?
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Simulation Study - Thin Plate

• No memory issues

• No unstable fits

• Take care with null space (don’t extrapolate?)

• Truncation better than sparsity for SCR?

• Smoothing param not changing from starting value (argh!)
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Future Work

1. SPDE computation

2. Thin plate smoothing parameter estimation

3. Fixed effects and spatial smooths together

4. 1D smooths on covariates
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