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Overview

1. The SPDE approach

2. The basis-penalty smoother approach

3. Examples
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Introduction

y(x) = η(x) + f (x) + ε(x)

• y(x) is the response variable

• η(x) are the fixed effects

• ε(x) is the unstructured error

• f (x) is the “structured random effect”
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Introduction

y(x) = η(x) + f (x) + ε(x)

• A flexible model for f (x) is a Gaussian process

• Common notation: f ∼ GP(0, c(x , x ′))

• c(x , x ′) = Cov [f (x), f (x ′)] is the covariance function

• c(x , x ′) often chosen to decay with increasing distance between x

and x ′

• [f (x1), . . . , f (xM)] ∼ N (0,Σ−1) where Σij = c(xi , xj)
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1D Gaussian Process Example
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The SPDE Approach

Instead of f ∼ GP(0, c(x , x ′)), we say f is a solution to a stochastic

partial differential equation (SPDE)

Df (x) = ε(x)

• D is a linear differential operator

• Examples: D = d
dx , D = ∂2

∂x2 + ∂2

∂y2

• [ε(x1), . . . , ε(xM)] ∼ N (0, IM) (a.k.a Gaussian white noise process)

• f is a Gaussian process

• The covariance function of f can be derived from D and vice versa

• The SPDE is an equivalent way of defining the Gaussian process
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The SPDE Approach - Finite Element Methods

Solving the SPDE:

Df (x) = ε(x)∫
Df (x)φ(x)dx =

∫
ε(x)φ(x)dx

〈Df , φ〉 = 〈ε, φ〉

for any test function φ(x)

This is not just a trick, this is the definition of what is meant when we

write Df (x) = ε(x)

(see - Generalised Functions/Distributions)
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The SPDE Approach - Finite Element Methods

Solving the SPDE:

Df (x) = ε(x)

〈Df , φ〉 = 〈ε, φ〉

Pick a set of basis functions φ1(x), . . . , φM(x) to represent f (x)

Also use this basis as the set of test functions

f (x) =
M∑
i=1

βiφi (x) =⇒
M∑
i=1

βi 〈Dφi , φj〉 = 〈ε, φj〉

for j = 1, . . . ,M

i.e. A set of M linear equations we can write in matrix-vector notation:

Pβ = e

where P ij = 〈Dφi , φj〉 and e j = 〈ε, φj〉 8



The SPDE Approach - Finite Element Methods

• Given Df (x) = ε(x)

• Choose a basis for f : φ1, . . . , φM with associated coefficients

β1, . . . , βM

• Choose a set of test functions: also φ1, . . . , φM

• Represent the SPDE as matrix-vector equation: Pβ = e

• P is fixed and known

• e has known distribution N (0,Qe)

• Can show β ∼ N (0,Q), where Q = PTQeP

Given a basis representation f (x) =
∑M

i=1 βiφi (x),

the SPDE imposes a multivariate-normal prior on the β’s
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The SPDE Approach - Finite Element Method 1D
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The SPDE Approach - Finite Element Method 2D

source: Advanced Spatial Modelling with SPDEs Using R and INLA, Krainski

et al. (2018)
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The Basis-Penalty Smoothing Approach

Penalised log-likelihood:

`p(β, λ) = `(β)− λ
∫

(Df (x))2 dx

• `(β) is a measure of fit (log-likelihood)

• λ
∫

(Df (x))2 dx is a smoothing penalty

• λ is a smoothing paramater that controls the amount of

penalisation

• Optimise the combination of log-likelihood and penalty

We can play the same game. Choose a basis representation for f (x):

f (x) =
M∑
i=1

βiφi (x) =⇒ λ

∫
(Df (x))2 dx = βTSλβ

where (Sλ)ij = λ
∫
Dφi (x)Dφj(x)dx
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The Basis-Penalty Smoothing Approach

`p(β, λ) = `(β)− βTSλβ

Lp(β, λ) = L(β) exp(−βTSλβ)

• exp(−βTSλβ) is proportional to a multivariate normal density with

precision matrix Sλ
• Take a Bayesian interpretation of the penalised log-likelihood and

view this as a prior

Given a basis representation f (x) =
∑M

i=1 βiφi (x),

the smoothing penalty imposes a multivariate-normal prior on

the β’s
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The SPDE and Smoothing Penalty do the same thing

y(x) = η(x) + f (x) + ε(x)

SPDE approach

Df (x) = ε(x)√
λ

f (x) =
∑M

i=1 βiφi (x)

Pλβ = e

β ∼ N (0,Qλ)

Basis-Penalty Smooth

λ
∫

(Df (x))2 dx

f (x) =
∑M

i=1 βiφi (x)

βTSλβ

β ∼ N (0,Sλ)

A wonderful thing: Qλ = Sλ

(The optimal smoothing spline is an estimator of the posterior mean of

the Gaussian process)
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The SPDE and Smoothing Penalty do the same thing

We can use R-INLA functions to construct the precision matrix Q

Then use Q in software most suited to our needs/experience

E.g. mgcv, TMB, JAGS, stan

Because Q is sparse, most efficiency advantages in software that can

make use of the sparsity
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Zooplankton Population Size
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Chlorophyll A

mgcv SPDE INLA SPDE

58 59 60 58 59 60

44.0

44.5

45.0

45.5

46.0

46.5

Longitude

La
tit

ud
e

3

6

9

12

Chlorophyll A

17



Point transect distance sampling - Hawaiian Akepa survey
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Point transect distance sampling - Hawaiian Akepa survey
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Point transect distance sampling - Hawaiian Akepa survey
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Spatial Capture-Recapture - SPDE with TMB
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Spatial Capture-Recapture - SPDE with TMB

22



Spatial Capture-Recapture - SPDE with TMB
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Spatial Capture-Recapture - SPDE with TMB
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Summary

1. The SPDE places a prior on basis function coefficients

2. Locations nearby are more correlated than locations far apart

3. The smoothing penalty places a prior on basis function coefficients

4. The penalty induces smooth functions (see point 2)

5. Same differential operator D gives same prior in both cases

6. Spread those SPDE wings far and wide - use Q wherever you have

need

Final point: there is value in ignorance! Being new to a complicated

topic is a chance to help others
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